Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/ds_interview_lib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека собеса по Data Science | вопросы с собеседований | Telegram Webview: ds_interview_lib/963 -
Telegram Group & Telegram Channel
Как обрабатывается дрейф концепции при обучении моделей с несбалансированными классами во времени

Дрейф концепции возникает, когда со временем меняется распределение данных, в результате чего изменяется связь между признаками и метками. Это особенно критично при наличии несбалансированных классов — например, в задачах по выявлению мошенничества, где миноритарный класс может смещаться незаметно, но существенно.

В процессе обучения дрейф компенсируется регулярным обновлением или переобучением модели на актуальных данных, чтобы сохранить соответствие новым шаблонам.

Также применяются инкрементальные алгоритмы, способные адаптироваться к новым данным без полной переинициализации. Используется подход скользящего окна: устаревшие данные постепенно исключаются из обучающей выборки.

Дополнительно отслеживается динамика распределения миноритарного класса. При изменении его частоты или поведенческих характеристик пересматриваются подходы к выборке и настройки, чувствительные к дисбалансу. Метрики, такие как recall на новых поступлениях, фиксируют отклонения, сигнализируя о необходимости обновлений.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/963
Create:
Last Update:

Как обрабатывается дрейф концепции при обучении моделей с несбалансированными классами во времени

Дрейф концепции возникает, когда со временем меняется распределение данных, в результате чего изменяется связь между признаками и метками. Это особенно критично при наличии несбалансированных классов — например, в задачах по выявлению мошенничества, где миноритарный класс может смещаться незаметно, но существенно.

В процессе обучения дрейф компенсируется регулярным обновлением или переобучением модели на актуальных данных, чтобы сохранить соответствие новым шаблонам.

Также применяются инкрементальные алгоритмы, способные адаптироваться к новым данным без полной переинициализации. Используется подход скользящего окна: устаревшие данные постепенно исключаются из обучающей выборки.

Дополнительно отслеживается динамика распределения миноритарного класса. При изменении его частоты или поведенческих характеристик пересматриваются подходы к выборке и настройки, чувствительные к дисбалансу. Метрики, такие как recall на новых поступлениях, фиксируют отклонения, сигнализируя о необходимости обновлений.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/963

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Библиотека собеса по Data Science | вопросы с собеседований from cn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA